Membrane depolarization and NADPH oxidase activation in aortic endothelium during ischemia reflect altered mechanotransduction.
نویسندگان
چکیده
We previously showed that "ischemia" (abrupt cessation of flow) leads to rapid membrane depolarization and increased generation of reactive oxygen species (ROS) in lung microvascular endothelial cells. This response is not associated with anoxia but, rather, reflects loss of normal shear stress. This study evaluated whether a similar response occurs in aortic endothelium. Plasma membrane potential and production of ROS were determined by fluorescence microscopy and cytochrome c reduction in flow-adapted rat or mouse aorta or monolayer cultures of rat aortic endothelial cells. Within 30 s after flow cessation, endothelial cells that had been flow adapted showed plasma membrane depolarization that was inhibited by pretreatment with cromakalim, an ATP-sensitive K(+) (K(ATP)) channel agonist. Flow cessation also led to ROS generation, which was inhibited by cromakalim and the flavoprotein inhibitor diphenyleneiodonium. Aortic endothelium from mice with "knockout" of the K(ATP) channel (K(IR)6.2) showed a markedly attenuated change in membrane potential and ROS generation with flow cessation. In aortic endothelium from mice with knockout of NADPH oxidase (gp91(phox)), membrane depolarization was similar to that in wild-type mice but ROS generation was absent. Thus rat and mouse aortic endothelial cells respond to abrupt flow cessation by K(ATP) channel-mediated membrane depolarization followed by NADPH oxidase-mediated ROS generation, possibly representing a cell-signaling response to altered mechanotransduction.
منابع مشابه
Membrane depolarization is the trigger for PI3K/Akt activation and leads to the generation of ROS.
Loss of fluid shear stress (ischemia) to the lung endothelium causes endothelial plasma membrane depolarization via ATP-sensitive K(+) (K(ATP)) channel closure, initiating a signaling cascade that leads to NADPH oxidase (NOX2) activation and ROS production. Since wortmannin treatment significantly reduces ROS production with ischemia, we investigated the role of phosphoinositide 3-kinase (PI3K)...
متن کاملModulation of nicotinamide adenine dinucleotide phosphate oxidase expression and function by 3',4'-dihydroxyflavonol in phagocytic and vascular cells.
Previously we have demonstrated that 3',4'-dihydroxyflavonol (DiOHF), a novel synthetic flavonol, protects against ischemia reperfusion injury in both heart and brain. In this study, we characterized the pharmacological effects of DiOHF on phagocytic and vascular NADPH oxidase. Superoxide release (lucigenin-enhanced chemiluminescence or cytochrome c reduction), NADPH oxidase activation (membran...
متن کاملShear stress-related mechanosignaling with lung ischemia: lessons from basic research can inform lung transplantation.
Cessation of blood flow represents a physical event that is sensed by the pulmonary endothelium leading to a signaling cascade that has been termed "mechanotransduction." This paradigm has clinical relevance for conditions such as pulmonary embolism, lung bypass surgery, and organ procurement and storage during lung transplantation. On the basis of our findings with stop of flow, we postulate t...
متن کاملRegulation of eosinophil membrane depolarization during NADPH oxidase activation.
Protein kinase C (PKC) activation in human eosinophils increases NADPH oxidase activity, which is associated with plasma membrane depolarization. In this study, membrane potential measurements of eosinophils stimulated with phorbol ester (phorbol 12-myristate 13-acetate; PMA) were made using a cell-permeable oxonol membrane potential indicator, diBAC4(3). Within 10 minutes after PMA stimulation...
متن کاملOxidative burst and NO generation as initial response to ischemia in flow-adapted endothelial cells.
Shear stress modulates endothelial physiology, yet the effect(s) of flow cessation is poorly understood. The initial metabolic responses of flow-adapted bovine pulmonary artery endothelial cells to the abrupt cessation of flow (simulated ischemia) was evaluated using a perfusion chamber designed for continuous spectroscopy. Plasma membrane potential, production of reactive O2 species (ROS), and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 288 1 شماره
صفحات -
تاریخ انتشار 2005